Binary Representation of Numbers

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 224— 232

16° 16! 162 163 16* 16° 168
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 16777216 4294967296

Powers

Principle: Each digit (d;) is multiplied by a non-negative power of the base (b),i.e.n = dy_;b¥™1 + --- + d;b* + dyb°

Base 10 (decimal):
Base 2 (binary):

Base 16 (hexadecimal): digitsare0,1,2,...,

digits are 0, 1,2,3,4,5,6,7,8,9
digits are 0, 1 (binary digit =

bit)
9,A,B,C,D,E,F

1729, = 1729 =1 x 10° + 7 X 10% + 2 x 10 + 9 x 10°
1101, =0b1101 =1 x 23 +1x 22+ 0x 2  +1x2° =13
5A4,c = 0x5A4 = 5 X 16% + 10 X 16* + 4 X 16° = 1444

Conversion 10 — 2

Method 1: Successive division by 2,
then reading of the last quotient and
of the remainders from the last one.

= 187 = 10111011,

Method 2: Successive decomposition as
a sum of powers of two, then have 1 for
each power present, 0 otherwise
(requires knowing the powers of two).

187 = 128 + 59
=128 +32 +27
=128+32+16+11
=128+32+16+8+3
=128+32+16+8+2+1
=27 +25+2%+ 23+ 20+ 2°

= 187 = 1011 1011,

Conversion 2 < 16

Method: From the right digit, each
hexadecimal digit is converted to four
bits, or vice versa (requires knowing
the numbers up to 15 in binary).

C137,, = 1100 0001 0011 0111,
11001010 1111 1110, = CAFE,,

Conversion 10 - 16

Method 1: Successive division by 16,
then reading of the last quotient and
of the remainders from the last one.

Unsigned integers (positive only)

Method 2: Successive decomposition as a
sum of weighted powers of 16, then have
the weight associated to each power

Information & Tips

- To make binary numbers easier to
read, bits can be grouped by 4 (like
decimal digits can be grouped by 3).

- The leftmost bit is called MSB, and
the rightmost bit is called LSB
(for most/least significant bit).

- The LSB indicates the parity of the
number (0 = even, 1 = odd).

- In hardware implementations, the
number of bits is most of the time a

2460116 (requires knowing the powers of 16). power of two: 8, 16, 32, 64, 128.
91153716 24601 = 6 X 4096 + 25 - Zeros can be padded on the left side
1196|16 =6X4096+16+9 if a specific length is wanted.
06 =6x%x16%+16 x 161 +9 x 16° - To encode an unsigned number n,

= 24601 = 6019,

= 24601 = 6019,

[log, n] + 1 bits are needed.

o Number of bits N 8 16 24 32 128 256
£ Minimum value 0 0 0 0 0 0 0
&  Maximumvalue 2¥ —1 255 65535 16777215 =4.29x10° =1.84x101° =3.40x1038 =1.16x1077

Conversion 10 < 2 for positive integers: like unsigned and left pad at least one 0 Information & Tips

Conversion 10 — 2 for negative integers

= Convert |n| in binary

= Pad atleast one 0

= Reverse all bits (= 2V — 1 — |n|)
*Add 1 (=2 —|n|)

= 100100110101102
= 001001001101 01102
®*1101101100101001>
= 11011011001010102

Example: n = —9430 on 16 bits

Signed integers (two's complement)

Conversion 2 — 10 for negative integers

= Convert each bit like unsigned, except the

Example: 11011011001010102

"=2+8+--+16384—-32768

- We must know if we are dealing
with unsigned or signed integers, it
cannot be guessed from the bits.

- Faster method than reverse and add
1: From the LSB, keep all the bits up
to the first 1, then reverse.

- The MSB shows the sign (0: +, 1: -).

= Reverse all bits (= |n| — 1) * 0010010011010101> ]
* Add 1 (= |n|) = 001001001101 0110 - Bits with the same value as the MSB
= Convert to decimal "2 4+ 4+ 48192 = 9430 can be padded. on the left side if a
= Put minus sign (= —|n|) " = —9430 specific length is wanted.

Direct method: - To encode a signed number n,

n > 0: [log, n] + 2 bits are needed
n < 0:[log,|n|] + 1 bits are needed.

MSB where a minus sign is applied = —9430
) Number of bits N 8 16 24 32 64 128 256
£ Minimumvalue —2""1' —128 —32768 —8388608 x~—2.15x10° ~—9.22x1018 ~—1.70x1038 x—5.79x1076
& Maximumvalue 2¥"1—1 127 32767 8388607 ~ 2.15x10° ~ 9.22x1018 ~ 1.70x1038 = 5.79x1076
I Fast product (n X 2X): Left shift the bits K times, and right pad 0s K times. 13 x 16 = 1101, « 4 = 11010000, = 208
2 Fastdivision (In/2%]):Right shift the bits K times, and left pad Os if unsigned [43/8] = 101011, > 3 = 000101, = 5
= or MSBs if signed K times (| | rounds towards —o). [—27/4] = 100101, > 2 = 111001, = —7
2024-04 Cheat Sheet © ® &® © Jérome Leclére


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2—1 2—2 2—3 2—4 2—5 2—6 2—7 2—8

Qo %]
25
sz 167" 1672
éo? 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125  0.00390625
Principle: Each digit is multiplied by an integer power of the base, n = dy,_1b" ™" + -+ dgb® + d_;b™" + -+ d_y b™NF
Base 10 (decimal): 23.10344 =2x10'+3x10°+1Xx 1071 +0Xx1072+3 X103 +4Xx107™* +4 x 10~°
Base 2 (binary): 10.10111, =1x21+0x2°+1x21+0Xx 22 +1x23+1x2™*+1x27°>=271875
Base 16 (hexadecimal): 3244, =3%x16°+2x16"1+4x 1672+ 4% 1673 =3.141601562 5
Conversion 10 = 2 Example 1: 13.1875 = 1101.0011, Example 2: 7.4 = 111.0110 0110...,
Method for the integer part: like integers. 13=8+4+1= 13 =1101, 7=4+2+1=>7 =111,
Method for the fractional part: 0.1875 x 2 =0. 0 0.4x2=0. 0
% Successive multiplication by 2 of the 0. x2=0. 0 0.8x2=1. 1
2 fractional part (if it reaches 0 = exact 0. x2=1. 1 0.6x2=1. 1
g conversion, else co number of bits), then 0. x2=1 1 0.2x2=0. 0
; reading of the units from the firstone. = 0.1875 = 0.0011, = 0.4 =0.0110 0110..., = 0.0110,
'g_ Fixed-point numbers are fractions whose denominator is a power of the Tips:
-g base (equivalent to manipulate integers and apply a factor). In base 2: - Every non-integer fixed-point binary num-
-E Np-1 NptNp-1 N ber has 5 as last digit in decimal (but not all
Z d.2t = Ay, 2 tot de2F 4t dovp-n2 +dong numbers with 5 as last digit in decimal can
= ' 2NF be encoded in a fixed-point binary number).
a7 4217 11 - With Np bits, there are at least D =
Examples: 2.718 75 = po 3.141 6015625 = Tosa 13.1875 = Te [Ng/log,(10)] = 0.3 Ng] correct decimals.
37 g 5 149 ¢ 5 - To have at least D correct decimals, Ng =
Whereas: 7.4 = 5 * 2—p,V(q,p) e N%; 745 = 20 * Z—p,V(q, p) eEN I’D logz(lo)‘l ~ I’D/03‘| bits are required.

D correctdecimals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NE bits required 4 7 10 14 17 20 24 27 30 34 37 40 44 47 50 54 57 60 64 67

Floating-point numbers

Principle: Express a number as the product of a fixed-point number (significand) and a power of the base (exponent).
n = +m X b®. To have a unique representation, the integer part of the significand is limited to: 1 < [m| < b.

This representation allows the encoding and manipulation of very large and very small numbers.

Like for fixed-point numbers, only fractions whose denominator is a power of the base can be represented exactly.

Binary format (b = 2) according to IEEE 754 standard: n=-1°2%(14+m), with0<m<1

- Sign encoded with one bit. eo: exponent offset

- Exponent encoded as an unsigned to which an offset is applied. s =sign|e = exponent| m =significand

- Significand encoded without the integer part, since it is always 1. 1 bit E bits M bits
Exceptions: Expression for subnormal numbers:

- e full of 1 & m = 0: #Inf (infinity) n=—152¢"%%1 (0 +m),with0 <m<1

- e full of 1 & m # 0: NaN (not a number) - Allows encoding zero.

-e=0: subnormal number (integer part of significand is 0) - Allows encoding smaller numbers.

-e=0andm =0: zero - Have less accuracy than normal numbers.
Format in the Storage (bit) Exponent Ma;amum Minimum Minimum All integers
IEEE 754 standard offset 22°-2-¢g normal subnormal  encoded exactly

standar | 1 | E | M | e ‘(2 — 2-M) 21-e ol-eg—M up to +£2M+1

16 bits, binary16 | 1 | z | 10 | 15 215x(2-2-10) 2-14 2724 211
half-precision =65504 %~ 6.10x10-5 = 5.96x10-8 =+2048
32 bits, binary32 | 1 | 8 | 23 | 127 2127x(2-2-23) 2-126 2-149 +224
float/single precision ~3.40x10%8  ~1.18x1038 ~1.40x10-* =%16777216
64 bits, binary64 | 1| 11 | = | 1023 21023x(2-2-52) 2-1022 2-1074 +253
double/double precision ~1.80x10308 x~2.23x10-308 =x4.94x10-32¢ x+9.01x1015
80 bits (no implicit bit) 216383(2_2-63) 2-16382 216445 +264

1] 15 | 1+63 | 16383

extended double = 1.19x104932 % 3.36x1074932 =~ 3.65x104%51 =~ +1.84x101°

128 bits, binary128 216383(2-2-112) 2-16382 2-16494 +2113
111 112 1

quadruple precision | | > | | 6383 ~ 1.19x104932 =~ 3.36x1074932 =~ 6.48x10-4966 =~ +1.04x1034

Conversion 10 — 2 for normal numbers Example: 8000.5 on 32 bits = 0x45FA0400

* Exponent computation: 267 < |n| < 2¢7%*1 = ¢ — ¢ = |log,|n|] "e—ey = |log,(8000.5)] =12= e =139

= Significand computation: 2¢7% (1 +m) = |n| = m = |n|/2¢7% — 1 *m = 8000.5/212 — 1 = 0.953 247 070 3125

= Convert the exponent and the significand in binary =e¢ =10001011,; m=0.1111 0100 00001,

= Put things together according to the format =[0/10001011[11110100000010000000000|

2024-04 Cheat Sheet © ® &® © Jérome Leclére


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

