Binary Representation of Numbers

rs	2^{0}	2^1	2 ²	2^3	2^4	2^5	2 ⁶	27	28	2 ⁹	210	211	2^{12}	2^{13}	214	2 ¹⁵	2^{16}	2^{24}	2 ³²
we									16^2				16^{3}				16^{4}	10	16 ⁸
Po	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	32768	65 5 3 6	16777216	4294967296

Principle: Each digit (d_i) is multiplied by a non-negative power of the base (b), i.e. $n=d_{N-1}b^{N-1}+\cdots+d_1b^1+d_0b^0$

Base 10 (decimal): digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base 2 (binary): digits are 0,1 (**bi**nary digit = bit)

 $1729_{10} = 1729 = 1 \times 10^{3} + 7 \times 10^{2} + 2 \times 10^{1} + 9 \times 10^{0}$ $1101_{2} = 0b1101 = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13$

Base 16 (hexadecimal): digits are 0, 1, 2, ..., 9, A, B, C, D, E, F $5A4_{16} = 0x5A4 = 5 \times 16^2 + 10 \times 16^1 + 4 \times 16^0 = 1444$

Conversion $10 \rightarrow 2$

Method 1: Successive division by 2, then reading of the last quotient and of the remainders from the last one.

 $\Rightarrow 187 = 1011\ 1011_2$

Unsigned integers (positive only)

Method 2: Successive decomposition as a sum of powers of two, then have 1 for each power present, 0 otherwise (requires knowing the powers of two).

$$187 = 128 + 59$$

$$= 128 + 32 + 27$$

$$= 128 + 32 + 16 + 11$$

$$= 128 + 32 + 16 + 8 + 3$$

$$= 128 + 32 + 16 + 8 + 2 + 1$$

$$= 27 + 25 + 24 + 23 + 21 + 20$$

 \Rightarrow 187 = 1011 1011₂

Conversion $2 \leftrightarrow 16$

Method: From the right digit, each hexadecimal digit is converted to four bits, or vice versa (requires knowing the numbers up to 15 in binary).

 $C137_{16} = 1100\ 0001\ 0011\ 0111_2$ $1100\ 1010\ 1111\ 1110_2 = CAFE_{16}$

Information & Tips

- To make binary numbers easier to read, bits can be grouped by 4 (like decimal digits can be grouped by 3).
- The leftmost bit is called MSB, and the rightmost bit is called LSB (for most/least significant bit).
- The LSB indicates the parity of the number (0 = even, 1 = odd).
- In hardware implementations, the number of bits is most of the time a power of two: 8, 16, 32, 64, 128.
- Zeros can be padded on the left side if a specific length is wanted.
- To encode an unsigned number n, $\lfloor \log_2 n \rfloor + 1$ bits are needed.

Conversion $10 \rightarrow 16$

Method 1: Successive division by 16, then reading of the last quotient and of the remainders from the last one.

 $\Rightarrow 24601 = 6019_{16}$

Method 2: Successive decomposition as a sum of weighted powers of 16, then have the weight associated to each power (requires knowing the powers of 16).

$$24 601 = 6 \times 4096 + 25$$

= $6 \times 4096 + 16 + 9$
= $6 \times 16^{3} + 16 \times 16^{1} + 9 \times 16^{0}$

 \Rightarrow 24 601 = 6019₁₆

ĎΩ	Number of bits	N	8	16	24	32	64	128	256
	Minimum value	0	0	0	0	0	0	0	0
2	Maximum value	$2^{N}-1$	255	65 535	16777215	$\approx 4.29 \times 10^9$	$\approx 1.84 \times 10^{19}$	$\approx 3.40 \times 10^{38}$	$\approx 1.16 \times 10^{77}$

Conversion 10 ↔ 2 for positive integers: like unsigned and left pad at least one 0 Information & Tips

Conversion $10 \rightarrow 2$ for negative integers

- Convert |n| in binary
- Pad at least one 0
- Reverse all bits (= $2^N 1 |n|$)
- Add 1 (= $2^N |n|$)

- Example: n = -9430 on 16 bits
- 10 0100 1101 01102
- **00**10 0100 1101 0110₂
- **1101 1011 0010 10012**
- 1101 1011 0010 1010₂

Conversion $2 \rightarrow 10$ for negative integers

- Reverse all bits (= |n| 1)
- Add 1 (= |n|)

Signed integers (two's complement)

- Convert to decimal
- Put minus sign (=-|n|)

Direct method:

- Convert each bit like unsigned, except the MSB where a minus sign is applied
- $0010\ 0100\ 1101\ 0110_2$ ■ $2+4+\cdots+8192=9430$

■ 2 + 8 + ··· + 16 384 - 32 768

Example: 1101 1011 0010 1010₂

- 2 + 4 + ··· + 6192 - 92

• 0010 0100 1101 0101₂

■ n = -9430

= -9430

- We must know if we are dealing with unsigned or signed integers, it cannot be guessed from the bits.
- Faster method than reverse and add 1: From the LSB, keep all the bits up to the first 1, then reverse.
- The MSB shows the sign (0: +, 1: -).
- Bits with the same value as the MSB can be padded on the left side if a specific length is wanted.
- To encode a signed number n, n > 0: $\lfloor \log_2 n \rfloor + 2$ bits are needed n < 0: $\lceil \log_2 |n| \rceil + 1$ bits are needed.

	Number of bits		8	16	24	32	64	128	256
	Minimum value	-2^{N-1}	-128	-32768	-8388608	$\approx -2.15 \times 10^9$	$\approx -9.22 \times 10^{18}$	$\approx -1.70 \times 10^{38}$	$\approx -5.79 \times 10^{76}$
22	Maximum value	$2^{N-1}-1$	127	32 767	8 388 607	$\approx 2.15 \times 10^9$	$\approx 9.22 \times 10^{18}$	$\approx 1.70 \times 10^{38}$	$\approx 5.79 \times 10^{76}$

Fast product $(n \times 2^K)$: Left shift the bits K times, and right pad 0s K times. $13 \times 16 = 1101_2 \ll 4 = 11010000_2 = 208$ Fast division ($\lfloor n/2^K \rfloor$): Right shift the bits K times, and left pad 0s if unsigned $\lfloor 43/8 \rfloor = 101011_2 \gg 3 = 000101_2 = 5$ or MSBs if signed K times ($\lfloor l \rfloor$ rounds towards $-\infty$). $\lfloor -27/4 \rfloor = 100101_2 \gg 2 = 111001_2 = -7$

$n = -1^{s} 2^{e-e_0} (1+m),$	with $0 \le m < 1$ e_0 : exponent offset
s = sign e = exponent	m = significand

S	-e = 0 and $m = 0$: zer	0			- Have less accuracy than normal numbers.				
Floating-point number	Format in the IEEE 754 standard	Storage (bit) 1 E M	Exponent offset e ₀	$Maximum$ $2^{2^{E}-2-e_0}$ $\times (2-2^{-M})$	Minimum normal 2 ^{1–e} 0	Minimum subnormal 2 ^{1–e} 0 ^{–M}	All integers encoded exactly up to $\pm 2^{M+1}$		
	16 bits, binary16 half-precision	1 5 10	15	$2^{15} \times (2 - 2^{-10})$ $= 65 504$	2^{-14} $\approx 6.10 \times 10^{-5}$	2^{-24} $\approx 5.96 \times 10^{-8}$	$\pm 2^{11}$ = ± 2048		
	32 bits, binary32 float/single precision	1 8 23	127	$2^{127} \times (2-2^{-23})$ $\approx 3.40 \times 10^{38}$	2^{-126} $\approx 1.18 \times 10^{-38}$	2^{-149} $\approx 1.40 \times 10^{-45}$	±2 ²⁴ = ±16 777 216		
	64 bits, binary64 double/double precision	1 11 52	1023	$2^{1023} \times (2 - 2^{-52})$ $\approx 1.80 \times 10^{308}$	$2^{-1022} \approx 2.23 \times 10^{-308}$	$2^{-1074} \approx 4.94 \times 10^{-324}$	$\pm 2^{53}$ $\approx \pm 9.01 \times 10^{15}$		
	80 bits (no implicit bit) extended double	1 15 1+63	16 383	$2^{16383}(2-2^{-63}) \approx 1.19 \times 10^{4932}$	$2^{-16382} \approx 3.36 \times 10^{-4932}$	$2^{-16445} \approx 3.65 \times 10^{-4951}$	$\pm 2^{64}$ $\approx \pm 1.84 \times 10^{19}$		
	128 bits, binary128 quadruple precision	1 15 112	16 383	$2^{16383}(2-2^{-112})$ $\approx 1.19 \times 10^{4932}$	$2^{-16382} \approx 3.36 \times 10^{-4932}$	$2^{-16494} \approx 6.48 \times 10^{-4966}$	$\pm 2^{113}$ $\approx \pm 1.04 \times 10^{34}$		

Conversion $10 \rightarrow 2$ for normal numbers

- Exponent computation: $2^{e-e_0} \le |n| < 2^{e-e_0+1} \Rightarrow e e_0 = \lfloor \log_2 |n| \rfloor$
- Significand computation: $2^{e-e_0}(1+m) = |n| \Rightarrow m = |n|/2^{e-e_0} 1$
- Convert the exponent and the significand in binary
- Put things together according to the format

Example: 8000.5 on 32 bits = 0x45FA0400

- $e e_0 = \lfloor \log_2(8000.5) \rfloor = 12 \Longrightarrow e = 139$
- $m = 8000.5/2^{12} 1 = 0.9532470703125$
- $e = 10001011_2$; $m = 0.1111010000001_2$